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Bounds on the length of magnetic field lines in a two-dimensional plasma
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Magnetic field lines in ideal turbulent plasmas tend to become quite complicated and their length to grow in
time. Diffusivity allows for reconnection and possible shortening, but this fact has not so far been rigorously
qguantified. We show that in a two-dimensional diffusive plasma the mean length of field lines stays bounded
for all time. Moreover, these estimates are local, in the sense that the mean values of magnetic field and
velocity in the neighborhood of a ball determine bounds for length within the ball, without recourse to external

magnitudes.
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[. INTRODUCTION within a simply connected domaif) of the plane whose

boundary is a piecewise differentiable curve. Incompressibil-

Magnetic field lines in ideal plasmas are transported byity means thatv-u=0, and, since we may assume that the
the flow as material points. As a result, if the fluid flow is fluid does not cross the boundany;n|,,=0. Also, V-B
chaotic or simply very complex, the configuration of field =0, andB is assumed known at the initial tinte=0.
lines tends to become extremely complicated in time and The induction equation is part of the full magnetohydro-
their length to increase markedly. The presence of a positivdynamics(MHD) system: the velocity satisfies the momen-
resistivity has a smoothing effect upon the field gradient, butum equation with a forcing term equal to the Lorentz force
that does not meaa priori that field lines must become (VXB)XB, plus possibly other material forces such as
simpler. It is true, however, that now field lines may recon-gravity. Boundary conditions upon and B depend on the
nect and eventually simplify the geometry, releasing in theparticular problem. If there is no influx of energy from the
process large amounts of magnetic energy, a fact that is beutside, both kinetic |ul|3=/ o|u|?do) and magnetic en-
lieved to be central to the explanation of solar and stellaergy (changingu to B in the previous formularemain
eruptive phenomenesee, e.g.[1,2] and references thergin  hounded for all time. This always happens for standard ho-
We will show that, at least in dimension 2, resistivity indeedmogeneous boundary conditions.
provides a bound for the spatial and temporal mean length of For results that do not depend on the particular form of
magnetic field lines: while some of them may at some timethe velocity, the use of the induction equation alone is justi-
be very convoluted, on the whole they are not. Moreover, thgied and simpler, since it is linear B. We will be as general

sizes of magnetic and kinetic energy within a region providegs possible and will not specify boundary conditions Bor
a similar bound for this region, which proves that the short-except to demand that

ening effect of resistivity is local: this is not obvioaspriori,
because some tangled configuration could be transported (T
somewhere else by the flow, increasing mean length there. It ?jo J&Q|B|ds dE=My, @
must be noted that the means we will take are somewhat
weighted by the size dB|: identical configurations of field for some constané; uniform for all time T, which is rea-
lines have a larger mean [B| is larger. The immediate sonable enough. Our second assumption is also true for stan-
reason why we cannot extend these results to dimension 3 @&ard boundary conditions of the MHD system: in dimension
mathematical: only in a plane does there exist a scalar vect@ the mapping— (u(t),B(t)) is continuous and bounded in
potential satisfying an induction equation amenable to analytime for the Sobolev nornt*(Q) (see, e.g.[7]). We will
sis. If there is a physical obstruction is not clear so far. In-use only the fact that the sum of kinetic and magnetic ener-
deed, the behavior of vector fields is very different in dimen-gies plus the mean density current
sions 2 and 3: the latter may become entangled, which is
related to the capacity to store enef@}, and with the fact f |J|d0'=f 9By 9By
that two-dimensional dynamos do not exigt5]. It is also Q al Ix ay
intuitively obvious that reconnection is easier in a plane.
Still, the effect of diffusion is analogous in any dimension, is bounded for all time.(Of course the boundedness of
so it is likely that some bounds exist for the three-||VB in time implies this)
dimensional case. In dimension 2, however, we may refine Now, any solenoidal two-dimensional vector field in a
some techniques created to study passive scalar equiipns Simply connected domain is the curl of a scalar vector field
in order to achieve our end. A i.e.,dAldy=B,, dAldx=—B,. All such possibléA’s dif-

Let us consider the mathematical setting of the problemfer by a constantdepending on time A satisfies the “un-
Assume that an incompressible plasma with resistiyignd ~ curled” equation
fluid velocity u satisfies the induction equation (9A1dt) +u- VA= pAA+C(1) 3

dU$M2

dBldt = nAB+V X (uXB) (1)  and by making a trivial gauge transformation, i.e., taking
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instead ofA the potentiaA—D(t), with D' (t)=C(t), one If we integrate every term i}, the second one vanishes:
obtains with obvious notational changes
(0AIdt) +u-VA=7AA, A(0)=A,. @ fQ“'V(@A)dU: LV'[“(‘I"’A)]"‘T
This simplification is, however, not free of charge. While we
could chose, sayA(t,x,) arbitrarily, after the transformation = J Q(CDOA)U' nds=0,
a

we are totally ignorant of the values Afat any given point.
This is relevant because with some hypothesis uBd®  while the third one equals
(such asf,u|Blds bounded for all timg by taking X,

e dQ, A(t,X) =0, we could getA bounded indQ) for all j A(DoAYd _j I(DP-A)
time. If, moreover A satisfies the scalar parabolic equation a 77 |0 an
(4), which as such is subject to the maximum and minimum

principles [extrema of A are found at ) X{0})U (90 __f ®'(A)B-dr
X[0,2))], A would remain bounded for all time, which  Ja '
would be very convenient. Unfortunately, to demand both

things at the same time is an overdetermination. Thus we ardence, after integrating in time i0,T],
bound to allow for indefinite growth oA. However,

T JA
f |A(T)—A0|d0'$f f —|dodt
Q 0 Jaldt

}
sf f Ul V A+ 7| AA|dodt
0JQ

d—f CD’AaAd
s= o ()a—ns

T T
”f f ®"(A)|VA|’dodt= ”J f ®'(A)B-drdt
0JO 0 JoQ

+ J D(Ay)—P(A(T))do.
Q

®

T . pe
Let us choose a specifie. For any smooth, compactly, sup-
< Bj|,+ =M3T : ’ !
fo (HUHZH I an|J|d0')dt 3" ported real functionp, let

©)

because of our previous statements upon energies and current

<D(S)=f_sx(s—v)¢(v)2dv.

density. ThUSHA”% grows at most linearly in time. Also, by Notice that® is the convolution of the identical function in
standard energy inequalities, 5 ;
[0,0) and ¢“. By elementary calculations,

.
1 A(T)%d =1JA2d—JJAB~ddt , s
ZJQ (o= j Aadomm [ [ A8 0=d'(s)= | $(v)*dv=] 4|3, €]
— WJTJ |B|?dodt. (6)  which, by the mean value theorem, implies
0JQ
|®(s1) — D()| < B3 51— 52l (10)

(Notice thatdA/adn is the tangential component &.) Thus
if the boundary term is bounded or negati(eg., if the Also
tangential component d8 vanishey then|A|,, and there- P(s) = 2
) S S)=¢(S)”. 11
fore ||Al|;, remain bounded in time. (5)=¢(s) (3
Finally, notice that the level curves & A=const are Let us bound all the terms in the previous inequality:

precisely the field lines oB. . .
Jf @’(A)B-drdtsnn(pngjf |B|dsdt,
0 JoQ 0 JoQ

Il. GLOBAL ESTIMATES 7
Let ®:(—,0)—[0>) be a positive, increasing, and
smooth function. Obviously U D(Ag)—DP(A(T))do SHd’”%J |Ao—A(T)|do.
(9lt) (PoA)=D'(A) (dA/dt), ’ ! 12
u-V(®A)=®'(A)(u-VA), We are left with
A(DoA) =D (A)AA+D"(A)| VA fOT f0¢(A)2|VA|2dadts||¢||§
Therefore the functiob-A satisfies the equation
d , X fo |Bldsdt+ Ef |AO—A(T)|d0'>.
(@A) +U-V(DoA) = pA(DoA) + 7®"(A)|VA|2=0. 0 Joa nJa
(7 (13
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By Cauchy-Schwarz’s inequality, Since the set of possiblg’s is dense il_2(—«,»), we have
proved our main bound,
1(T
= A)|VA *
Tfo fg‘ﬁ( )[VAdodt J A+(v)2dv<M2. (17)
1T 12 . . o
gm(Q)llz(_f J' ¢(A)2|VA|2d0'dt) , This is a time-independent bound on field line length. As
TJoJa mentioned previously, we must admit that the integral on the

left measures not only field line lengths, but also the size of
wherem({)) denotes the area &@. Thus the field. This occurs because an analogous distribution of
lengths within an interval ob’s will be multiplied by the
1(7 _ wl (T length of the interval: thus, the more rapidyvaries for a
$J-0 jﬂ¢(A)|VA|d0dt\||¢||2m(9) $JO LQ|B|det fixed geometrical configuration of field lines, the larger the
integral. Sincg VA|=|B|, in a sense the integral measures
1 12 the length of field lines weighted H|.
+ _Tf |Ao—A(T)|d0) : To study some consequences of the above formula we
7o could see what would happenAfremains bounded and ;
(14) tends to zero in time. TheM also tends to zero, so the
integral of A2 tends to zero a§ —o. Hence the function
By the bounds on the right-hand quantities stated in the Initself tends to zero for almost every. (To be rigorous, for
troduction, every sequencé,—o there exists a subsequence such that
ATk—>O almost everywhergHowever,A 1 is rather peculiar:

if two lines A=v,, A=v, have a sizable length, all the
intervening linesA=v, v,<v<wv,, will have at least an in-
termediate length, which suggests that the only wayAfer
=M &ll,. (19  to tend to zero almost everywhere is to make its support
o ) smaller and smaller, i.e., a single &twill tend to fill all Q.
Now, it is known 8] that for any smooth enough function | gther wordsA tends to a constant and theref@do zero.

such asA, for almost everyv the level setsS,:A=v are | fact, dividing by T the energy identity6), all the terms
smooth manifoldgand therefore disjoint union of curves except perhaps the last one tend to zero with our assump-

1 1/2
M+ ;M:;)

1(T
+]. | sy aidodt=] gl

and for any continuous functio in () tions, so the last one must tend also. TBugends to vanish
B in quadratic mean, as expected.
L;GWA'dU: f_wdv LUG(S)dS’ lll. LOCAL ESTIMATES

The previous bounds could in principle allow for field
es to be very twisted in some small region(®fand com-
pensate for this fact by being rather straight in the remaining

vanish in an open subset 61, and therefore foA to be : .
constant there'pi ., for somes the setS, may fail to be a part. We Wllllprove'that local length is bounded by local
RN arameters, in particular local means of the velocity and

ES'CC;:] :frzg}ggth;gx:féromfL('j‘}'l);ﬂ:r?;s %rfcgf Ejerldallgeets g;l[':wagnetic field. We visualize field lines as transported by the
levels of meas.ure zero ' 1;I]ow ]:Nhil[? diffused by resi;tivit;ll(. It _is not clear,_hcl)wever,
) - NN . ow far the transport must be taken into account in long-term
the-[zflgqug G=¢eA, in S, the functionG equals¢(v), and evolution, so our estimates are not so predictable.
As a first approach, one thinks that the length of a curve
" within a ball of radiusr should be at most of order unless
f ¢(A)|VA|dg:f d(v)A(S,)dv, (16) it is very intrincate there. But since for smallfew of the
Q — field lines cut the ball, the mean should behave likgr),
with F(r)—0 asr—0. This rough approximation is rather
whereA(S,) denotegfor almost every) the length ofS,.  correct, andF may be bounded with the values of the field
Of course the setS, and therefore their length may vary in and velocity within a concentric ball of radius 2
time. If we denote by\ +(v) the time mean of their lengths, Let xge Q, By =B(x0,2r)CQ, and ¢ be a positive

10T smooth function whose value is 1 B,=B(Xq,r) and van-
AT(U):_J A(S,)dv, ishing outsideB,, chosen in such a way thasay |V ]
TJo <3/r. Let ® be as before: our test function will now be

Y(PoA). By elementary calculations it satisfies the evolution
the previous bound yields equation

whereds denotes the arclength differential; this result may .
be vastly generalized. Notice that it is conceivable Boto

[(d/dt) +u-V = pAI[y(PA) ]+ ny®"(A)|VA[?

ffmd’(”)AT(v)deM”(p”” —D(A)(U-Vih— 7Ag)— 27D  (A)VA-Vi.  (18)
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Since y(P-A) vanishes in the neighborhood éf), the in-
tegrals ofu- V[ ¢/(P-A)] and A[ ¢(P-A)] vanish. Also,

J@(A)Awda=—f d'(A)VA-Vydo,
Q Q

f@(A)u-V¢da=—f #®'(A)u- VA do.
Q Q

Hence, integrating the whole equation dX[0,T] (or,
equivalently, inB,, X[0,T]),

T
2 2 —
], |, vomAvardos= [ wan)

.
—®(A(T)))do— fo fB $®' (A)u- VA dodt

-
—f f ®'(A)VA-Vydodt. (19
0 BZr
The first term on the right-hand side may as before be
bounded by
I Bl5T sup(|ul 2z, [Bl2g,, + 7l9ll1s,) = 415M 1, T.
[0.1]

(20

The second and third terms admit different estimates, aft
writing |®'(A)|<|¢|5 and |[VA|=|B|. If we denote by
[B. or the maximum of/B| in B,,, the sum of the second
and third terms may be bounded by

T
otz sutet. || [ 1o ivoisray
[01] 0 JBy

11T
s||¢gT(:e,u.q|B||m,2r (Tff |u|d<rdt+127-rnr)
[0,T] 0 JBy

=[|¢l5M, T, (21)

with an obvious notation. We have usd®¥ |<3rr,
m(B,,) =4mr?. If instead we usé.? norms, we get a bound

like
1 (T 1/2] 1(T 1/2
—fj IB|2 dodt (-jJ lul2dodt
T 0 JBy T 0 JBy
™ 2
67| =135, T. @2)

lll3 T
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By using as before the inequality of Cauchy-Schwarz,
1(T
—f f S(A)|VAdodt
TJo Js,
\/; 1 (T 1/2
el 2 2
<r T(TJO fBzrqs(A) |VA|*dodt
a
<[ #lor ;(Ml,r+Mi,r)a
for r=2,3. LetN; ;= v@/np(M,+M; ). Define as before
1(T
ATr(u)z—f A(S,NB,)dt.
f T 0

By using the same theorems as in the global case, now in the
domainB,, we are left with the local estimate

f AT‘r(U)Zdl)eri’r . (23)

Since integrals irB,, occur inN; ;, it is reasonable tha; ,
tends to O withr. For some cases one of the possitdéemay
be more advisable than another. If, for instance, the peak of

8 is large atB,, while its energy there remains moderate,

N3, is better. On the other hand, the factor involving the
velocity is definitely smaller fori =2, so that a moderate
maximum ofB would make this bound preferable. We see
that quiescent regions, where the normsucénd/orB are
small, yield a small mean length, emphasizing the local na-
ture of the effect.

IV. CONCLUSIONS

While modeling shows that in a chaotic ideal plasma
magnetic field lines tend to become very complicated and
lengthy, it is believed that diffusivity will simplify the geom-
etry through reconnectiofand therefore release of magnetic
energy. We prove and quantify this belief for two-
dimensional plasmas by showing that there exist uniform
bounds for the mean length of magnetic field lines, the mean
also taking into account the field size. Moreover, these
bounds are local as well as global, in the sense that the mean
length of field lines within a ball of the domain is bounded
by parameters depending only on the local behavior of the
velocity and the magnetic field.
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