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Bounds on the length of magnetic field lines in a two-dimensional plasma

Manuel Núñez
Departamento de Ana´lisis Matema´tico, Universidad de Valladolid, 47005 Valladolid, Spain

~Received 14 September 2000; published 27 February 2001!

Magnetic field lines in ideal turbulent plasmas tend to become quite complicated and their length to grow in
time. Diffusivity allows for reconnection and possible shortening, but this fact has not so far been rigorously
quantified. We show that in a two-dimensional diffusive plasma the mean length of field lines stays bounded
for all time. Moreover, these estimates are local, in the sense that the mean values of magnetic field and
velocity in the neighborhood of a ball determine bounds for length within the ball, without recourse to external
magnitudes.

DOI: 10.1103/PhysRevE.63.037402 PACS number~s!: 52.30.Cv, 52.65.Kj, 96.60.Rd, 02.30.Jr
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I. INTRODUCTION

Magnetic field lines in ideal plasmas are transported
the flow as material points. As a result, if the fluid flow
chaotic or simply very complex, the configuration of fie
lines tends to become extremely complicated in time a
their length to increase markedly. The presence of a pos
resistivity has a smoothing effect upon the field gradient,
that does not meana priori that field lines must becom
simpler. It is true, however, that now field lines may reco
nect and eventually simplify the geometry, releasing in
process large amounts of magnetic energy, a fact that is
lieved to be central to the explanation of solar and ste
eruptive phenomena~see, e.g.,@1,2# and references therein!.
We will show that, at least in dimension 2, resistivity inde
provides a bound for the spatial and temporal mean lengt
magnetic field lines: while some of them may at some ti
be very convoluted, on the whole they are not. Moreover,
sizes of magnetic and kinetic energy within a region prov
a similar bound for this region, which proves that the sho
ening effect of resistivity is local: this is not obviousa priori,
because some tangled configuration could be transpo
somewhere else by the flow, increasing mean length ther
must be noted that the means we will take are somew
weighted by the size ofuBu: identical configurations of field
lines have a larger mean ifuBu is larger. The immediate
reason why we cannot extend these results to dimension
mathematical: only in a plane does there exist a scalar ve
potential satisfying an induction equation amenable to an
sis. If there is a physical obstruction is not clear so far.
deed, the behavior of vector fields is very different in dime
sions 2 and 3: the latter may become entangled, whic
related to the capacity to store energy@3#, and with the fact
that two-dimensional dynamos do not exist@4,5#. It is also
intuitively obvious that reconnection is easier in a plan
Still, the effect of diffusion is analogous in any dimensio
so it is likely that some bounds exist for the thre
dimensional case. In dimension 2, however, we may re
some techniques created to study passive scalar equation@6#
in order to achieve our end.

Let us consider the mathematical setting of the proble
Assume that an incompressible plasma with resistivityh and
fluid velocity u satisfies the induction equation

]B/]t 5hDB1“3~u3B! ~1!
1063-651X/2001/63~3!/037402~4!/$15.00 63 0374
y

d
e
t

-
e
e-
r

of
e
e
e
-

ed
It

at

is
or
y-
-
-
is

.
,

e

.

within a simply connected domainV of the plane whose
boundary is a piecewise differentiable curve. Incompressi
ity means that“•u50, and, since we may assume that t
fluid does not cross the boundary,u•nu]V50. Also, “•B
50, andB is assumed known at the initial timet50.

The induction equation is part of the full magnetohydr
dynamics~MHD! system: the velocity satisfies the mome
tum equation with a forcing term equal to the Lorentz for
(“3B)3B, plus possibly other material forces such
gravity. Boundary conditions uponu and B depend on the
particular problem. If there is no influx of energy from th
outside, both kinetic (iui2

25*Vuuu2 ds) and magnetic en-
ergy ~changing u to B in the previous formula! remain
bounded for all time. This always happens for standard
mogeneous boundary conditions.

For results that do not depend on the particular form
the velocity, the use of the induction equation alone is ju
fied and simpler, since it is linear inB. We will be as general
as possible and will not specify boundary conditions forB,
except to demand that

1

TE0

TE
]V

uBuds dt<M1 , ~2!

for some constantM1 uniform for all timeT, which is rea-
sonable enough. Our second assumption is also true for s
dard boundary conditions of the MHD system: in dimensi
2 the mappingt→„u(t),B(t)… is continuous and bounded i
time for the Sobolev normH1(V) ~see, e.g.,@7#!. We will
use only the fact that the sum of kinetic and magnetic en
gies plus the mean density current

E
V

uJuds5E
V
U]B2

]x
2

]B1

]y Uds<M2

is bounded for all time.~Of course the boundedness
i¹Bi2 in time implies this.!

Now, any solenoidal two-dimensional vector field in
simply connected domain is the curl of a scalar vector fi
A, i.e.,]A/]y5B1 , ]A/]x52B2. All such possibleA’s dif-
fer by a constant~depending on time!. A satisfies the ‘‘un-
curled’’ equation

~]A/]t ! 1u•“A5hDA1C~ t ! ~3!

and by making a trivial gauge transformation, i.e., taki
©2001 The American Physical Society02-1
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BRIEF REPORTS PHYSICAL REVIEW E 63 037402
instead ofA the potentialA2D(t), with D8(t)5C(t), one
obtains with obvious notational changes

~]A/]t ! 1u•“A5hDA, A~0!5A0 . ~4!

This simplification is, however, not free of charge. While w
could chose, say,A(t,x0) arbitrarily, after the transformation
we are totally ignorant of the values ofA at any given point.
This is relevant because with some hypothesis uponBu]V

~such as*]VuBuds bounded for all time!, by taking x0
P]V, A(t,x0)50, we could getA bounded in]V for all
time. If, moreover,A satisfies the scalar parabolic equati
~4!, which as such is subject to the maximum and minim
principles @extrema of A are found at (V3$0%)ø„]V
3@0,̀ )…], A would remain bounded for all time, whic
would be very convenient. Unfortunately, to demand b
things at the same time is an overdetermination. Thus we
bound to allow for indefinite growth ofA. However,

E
V

uA~T!2A0uds<E
0

TE
V
U]A

]t Udsdt

<E
0

TE
V

uuuu“Au1huDAudsdt

<E
0

TS iui2iBi21hE
V

uJuds D dt<M3T,

~5!

because of our previous statements upon energies and cu
density. ThusiAi1 grows at most linearly in time. Also, by
standard energy inequalities,

1
2 E

V
A~T!2ds5 1

2 E
V

A0
2ds2hE

0

TE
]V

AB•dr dt

2hE
0

TE
V

uBu2dsdt. ~6!

~Notice that]A/]n is the tangential component ofB.! Thus
if the boundary term is bounded or negative~e.g., if the
tangential component ofB vanishes!, then iAi2, and there-
fore iAi1, remain bounded in time.

Finally, notice that the level curves ofA, A5const are
precisely the field lines ofB.

II. GLOBAL ESTIMATES

Let F:(2`,`)→@0,̀ ) be a positive, increasing, an
smooth function. Obviously

~]/]t ! ~F+A!5F8~A! ~]A/]t ! ,

u•“~F+A!5F8~A!~u•“A!,

D~F+A!5F8~A!DA1F9~A!u“Au2.

Therefore the functionF+A satisfies the equation

]

]t
~F+A!1u•“~F+A!2hD~F+A!1hF9~A!u“Au250.

~7!
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If we integrate every term inV, the second one vanishes:

E
V

u•“~F+A!ds5E
V
“•@u~F+A!#ds

5E
]V

~F+A!u•n ds50,

while the third one equals

E
V

D~F+A!ds5E
]V

]~F+A!

]n
ds5E

]V
F8~A!

]A

]n
ds

52E
]V

F8~A!B•dr .

Hence, after integrating in time in@0,T#,

hE
0

TE
V

F9~A!u“Au2dsdt5hE
0

TE
]V

F8~A!B•drdt

1E
V

F~A0!2F„A~T!…ds.

~8!

Let us choose a specificF. For any smooth, compactly, sup
ported real functionf, let

F~s!5E
2`

s

~s2v !f~v !2dv.

Notice thatF is the convolution of the identical function in
@0,̀ ) andf2. By elementary calculations,

0<F8~s!5E
2`

s

f~v !2 dv<ifi2
2 , ~9!

which, by the mean value theorem, implies

uF~s1!2F~s2!u<ifi2
2us12s2u. ~10!

Also

F9~s!5f~s!2. ~11!

Let us bound all the terms in the previous inequality:

hU E
0

TE
]V

F8~A!B•drdtU<hifi2
2E

0

TE
]V

uBudsdt,

U E
V

F~A0!2F„A~T!…dsU<ifi2
2E

V
uA02A~T!uds.

~12!

We are left with

E
0

TE
V

f~A!2u“Au2dsdt<ifi2
2

3S E
0

TE
]V

uBudsdt1
1

hEV
uA02A~T!uds D .

~13!
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By Cauchy-Schwarz’s inequality,

1

TE0

TE
V

f~A!u“Audsdt

<m~V!1/2S 1

TE0

TE
V

f~A!2u“Au2 dsdtD 1/2

,

wherem(V) denotes the area ofV. Thus

1

TE0

TE
V

f~A!u“Audsdt<ifi2m~V!1/2S 1

TE0

TE
]V

uBudsdt

1
1

hTEV
uA02A~T!uds D 1/2

.

~14!

By the bounds on the right-hand quantities stated in the
troduction,

1

TE0

TE
V

f~A!u“Audsdt<ifi2m~V!1/2S M11
1

h
M3D 1/2

5M ifi2 . ~15!

Now, it is known @8# that for any smooth enough functio
such asA, for almost everyv the level setsSv :A5v are
smooth manifolds~and therefore disjoint union of curves!,
and for any continuous functionG in V

E
V

Gu“Auds5E
2`

`

dvE
Sv

G~s!ds,

whereds denotes the arclength differential; this result m
be vastly generalized. Notice that it is conceivable forB to
vanish in an open subset ofV, and therefore forA to be
constant there; i.e., for somev ’s the setSv may fail to be a
union of smooth curves. Obviously there are no field lines
such a region. However, this only may occur for a set
levels of measure zero.

Taking G5f+A, in Sv the functionG equalsf(v), and
therefore

E
V

f~A!u“Auds5E
2`

`

f~v !L~Sv!dv, ~16!

whereL(Sv) denotes~for almost everyv) the length ofSv .
Of course the setsSv and therefore their length may vary i
time. If we denote byLT(v) the time mean of their lengths

LT~v !5
1

TE0

T

L~Sv!dv,

the previous bound yields

E
2`

`

f~v !LT~v !dv<M ifi2 .
03740
-
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Since the set of possiblef ’s is dense inL2(2`,`), we have
proved our main bound,

E
2`

`

LT~v !2dv<M2. ~17!

This is a time-independent bound on field line length.
mentioned previously, we must admit that the integral on
left measures not only field line lengths, but also the size
the field. This occurs because an analogous distribution
lengths within an interval ofv ’s will be multiplied by the
length of the interval: thus, the more rapidlyA varies for a
fixed geometrical configuration of field lines, the larger t
integral. Sinceu“Au5uBu, in a sense the integral measur
the length of field lines weighted byuBu.

To study some consequences of the above formula
could see what would happen ifA remains bounded andM1
tends to zero in time. ThenM also tends to zero, so th
integral of LT

2 tends to zero asT→`. Hence the function
itself tends to zero for almost everyv. ~To be rigorous, for
every sequenceTn→` there exists a subsequence such t
LTk

→0 almost everywhere.! However,LT is rather peculiar:

if two lines A5v1 , A5v2 have a sizable length, all th
intervening linesA5v, v1,v,v2, will have at least an in-
termediate length, which suggests that the only way forLT
to tend to zero almost everywhere is to make its supp
smaller and smaller, i.e., a single setSv will tend to fill all V.
In other words,A tends to a constant and thereforeB to zero.
In fact, dividing byT the energy identity~6!, all the terms
except perhaps the last one tend to zero with our assu
tions, so the last one must tend also. ThusB tends to vanish
in quadratic mean, as expected.

III. LOCAL ESTIMATES

The previous bounds could in principle allow for fie
lines to be very twisted in some small region ofV and com-
pensate for this fact by being rather straight in the remain
part. We will prove that local length is bounded by loc
parameters, in particular local means of the velocity a
magnetic field. We visualize field lines as transported by
flow while diffused by resistivity. It is not clear, howeve
how far the transport must be taken into account in long-te
evolution, so our estimates are not so predictable.

As a first approach, one thinks that the length of a cu
within a ball of radiusr should be at most of orderr, unless
it is very intrincate there. But since for smallr few of the
field lines cut the ball, the mean should behave likerF (r ),
with F(r )→0 asr→0. This rough approximation is rathe
correct, andF may be bounded with the values of the fie
and velocity within a concentric ball of radius 2r .

Let x0PV, B̄2r5B̄(x0,2r ),V, and c be a positive
smooth function whose value is 1 inBr5B(x0 ,r ) and van-
ishing outsideB2r , chosen in such a way that~say! u“cu
<3/r . Let F be as before: our test function will now b
c(F+A). By elementary calculations it satisfies the evoluti
equation

@~]/]t ! 1u•¹2hD#@c~F+A!#1hcF9~A!u“Au2

5F~A!~u•“c2hDc!22hF8~A!“A•“c. ~18!
2-3
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Sincec(F+A) vanishes in the neighborhood of]V, the in-
tegrals ofu•“@c(F+A)# andD@c(F+A)# vanish. Also,

E
V

F~A!Dc ds52E
V

F8~A!“A•“c ds,

E
V

F~A!u•“c ds52E
V

cF8~A!u•“A ds.

Hence, integrating the whole equation inV3@0,T# ~or,
equivalently, inB2r3@0,T#),

hE
0

TE
B2r

cf~A!2u“Au2dsdt5E
B2r

c~F~A0!

2F„A~T!…!ds2E
0

TE
B2r

cF8~A!u•“A dsdt

2E
0

TE
B2r

F8~A!“A•“c dsdt. ~19!

The first term on the right-hand side may as before
bounded by

ifi2
2Tsup

@0,T#

~ iui2,B2r
iBi2,B2r

1hiJi1,B2r
!5ifi2

2M1,rT.

~20!

The second and third terms admit different estimates, a
writing uF8(A)u<ifi2

2 and u“Au5uBu. If we denote by
iBi`,2r the maximum ofuBu in B2r , the sum of the second
and third terms may be bounded by

ifi2
2S sup

@0,T#

iBi`,2r D S E0

TE
B2r

uuu1hu“cudsdtD
<ifi2

2TS sup
@0,T#

iBi`,2r D S 1

TE0

TE
B2r

uuudsdt112phr D
5ifi2

2M2,rT, ~21!

with an obvious notation. We have usedu“cu<3/r ,
m(B2r)54pr 2. If instead we useL2 norms, we get a bound
like

ifi2
2 TS 1

TE0

TE
B2r

uBu2 dsdtD 1/2F S 1

TE0

TE
B2r

uuu2dsdtD 1/2

16hAp

TG5ifi2
2M3,rT. ~22!
ld
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By using as before the inequality of Cauchy-Schwarz,

1

TE0

TE
Br

f~A!u“Audsdt

<rAp

TS 1

TE0

TE
B2r

f~A!2u“Au2dsdtD 1/2

<ifi2rAp

h
~M1,r1Mi ,r !,

for r 52,3. LetNi ,r5Ap/h(M1,r1Mi ,r). Define as before

LT,r~v !5
1

TE0

T

L~SvùBr !dt.

By using the same theorems as in the global case, now in
domainBr , we are left with the local estimate

E
2`

`

LT,r~v !2dv<rNi ,r . ~23!

Since integrals inB2r occur inNi ,r , it is reasonable thatNi ,r
tends to 0 withr. For some cases one of the possiblei ’s may
be more advisable than another. If, for instance, the pea
B is large atB2r while its energy there remains moderat
N3,r is better. On the other hand, the factor involving t
velocity is definitely smaller fori 52, so that a moderate
maximum ofB would make this bound preferable. We s
that quiescent regions, where the norms ofu and/orB are
small, yield a small mean length, emphasizing the local
ture of the effect.

IV. CONCLUSIONS

While modeling shows that in a chaotic ideal plasm
magnetic field lines tend to become very complicated a
lengthy, it is believed that diffusivity will simplify the geom
etry through reconnection~and therefore release of magnet
energy!. We prove and quantify this belief for two
dimensional plasmas by showing that there exist unifo
bounds for the mean length of magnetic field lines, the m
also taking into account the field size. Moreover, the
bounds are local as well as global, in the sense that the m
length of field lines within a ball of the domain is bounde
by parameters depending only on the local behavior of
velocity and the magnetic field.
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